Выбор и обоснование структурной схемы передатчика. Методы построения структурных схем одно-волоконных оптических систем передачи. Окончательный выбор структурной схемы передатчика. Мероприятия по охране труда.
Ключевые слова: пердатчик оптика сеть
Рубрика: Коммуникации, связь, цифровые приборы и радиоэлектроника
Предмет: Электроника и радиотехника
Вид: дипломная работа
Язык: русский
Прислал: Андриюк Ростислав
Дата добавления: 18.03.2005
62
3. Выбор и обоснование структурной
схемы передатчика
3.1. Методы построения структурных схем одно-волоконных оптических систем передачи
Как упоминалось в предыдущей главе, на сетях связи находят широкое применение волоконнооптические системы передачи со спектральным уплотнением. Кроме того, на низких скоростях передачи, до 140 Мбит\сБ где наблюдается взаимодействие между противонаправленными сигналами из-за обратного рассеяния, могут быть эффективно использованы системы с разделением по времени.
Ниже рассмотрены несколько методов и схем построения одно-волоконных оптических систем передачи различных типов и различного назначения.
Данная группа схем включает в себя одноволоконные оптические системы передачи с оптическими разветвителями, с оптическими циркуля-торами, устройствами спектрального уплотнения, а также фильтрами разделения мод оптического излучения. На рисунке 3.1 показана схема оптической системы передачи с модуляцией сигнала по интенсивности, содержащая блоки оптического передатчика (ОП), оптического приемника (ОП) устройства соединения станционного и линейного кабеля (УССЛК), разъемные соединители (РС), устройства объединения и разветвления оптических сигналов (УОРС).
Оптический передатчик (ОП) содержит преобразователь кода (ПК), преобразующий стыковой код в код, используемый в линии; усилитель (УC), усиливающий электрический сигнал до уровня, необходимого для модуляции полупроводникового лазера (ПЛ); лазерный генератор (ЛГ), включающий в себя устройство термостабилизации и прямой модулятор; согласующие устройства (С) полупроводникового лазера с оптическим волокном.
Оптический приёмник (ОПр) содержит согласующие устройства (С) оптического волокна с фотодиодом; фотодетектор (ФД); малошумящий транзисторный усилитель (У); фильтр (Ф), формирующий частотную характеристику приёмника, обеспечивающую квазиоптимальный приём сигнала; устройство линейной коррекции (ЛК), компенсирующее частотные
искажения электрической цепи на стыке фотодиода и первого транзистора усилителя; решающее устройство (РУ), устройство выделения тактовой частоты (ВТЧ) и преобразователь кода (ПК), преобразующий код линии в стыковой код.
Устройства объединения и разветвления оптических сигналов, в зависимости от типа одноволоконной оптической системы передачи, может представлять собой: оптический разветвитель или циркулятор при работе на одной оптической частоте в обоих направлениях; устройство спектрального уплотнения при работе на разных оптических частотах; модовый фильтр при работе на разных модах излучения оптического волокна.
С целью оценки основных характеристик одноволоконной оптической системы передачи можно использовать приближенные соотношения для расчета длины регенерационного участка (РУ).
Максимальная длина регенерационного участка волоконнооптической системы передачи данного типа определяется соотношением:
где Эми - энергетический потенциал одноволоконной оптической системы передачи , ДБ;
aов - затухание сигнала на одном километре оптического волокна, ДБ/км;
aуорс----- то же, в устройстве объединения и разветвления сигналов, ДБ;
aусслк - то же, в УССЛК, ДБ;
aрс, aнс - то же, в разъемных и неразъемных соединителях, ДБ;
l с - строительная длина оптического кабеля, км. При этом:
где Эми' - энергетический потенциал, ДБ, волоконнооптическая система передачи при отсутствии шума обратного рассеяния излучения в оптическом волокне;
Ршор/Рш - доля шума обратного рассеяния в полном шуме на входе решающего устройства.
Рассчитаем длину регенерационного участка одноволоконной оптической системы передачи первого типа при следующих исходных данных: Эми=35 ДБ, Зэ=6 ДБ, aов=1 ДБ, aнс=aусслк=0.1 ДБ, aрс=1 ДБ, lс=2 км. Так по формуле (2.1), при использовании оптических разветвителей с aуорс=4ДБ:
Максимальная длина регенерационного участка для второй группы схем определяется соотношением:
,где aуоп - затухание сигнала в УОП, ДБ;
Эми” - энергетический потенциал одноволоконнооптической системы передачи , определяемый соотношениями:
Эми”=Эми' при использовании оптических переключателей (Эми'-
энергетический потенциал обычной волоконнооптической системы
передачи с учётом специального кодирования).
Эми”=Эми'-10lg(1+Ршоу/РШ) при использовании оптического разветвителя с оптическим усилителем, где Ршор и Рш - мощности эквивалентного шума на входе оптического приемника и шума оптического усилителя на его выходе, ДБ.
Затухание сигнала в устройстве оптического переключения определяется соотношениями:
aуоп=aп при использовании оптического переключателя, где aп - затухание сигнала в оптическом переключателе;
--aуоп=aор-Коу при использовании оптического разветвителя с оптическим усилителем, где Коу - коэффициент усиления ОУ, ДБ.
Длина регенерационного участка l2 для приведённых выше значений параметров аппаратуры и использовании оптических переключателей (aуоп=3.5ДБ), согласно формуле (2.3), составляет:
На стоимость одноволоконнооптической системы передачи второй группы существенно влияет выбор типа устройства оптического переключения, особенно в случае использования оптических усилителей. Надежность волоконнооптической системы передачи этой группы, в отличие от рассмотренной выше, существенно зависит от надежности устройства оптического переключения в случае применения оптического усилителя, так как для накачки таких усилителей применяются полупроводниковые лазеры.
В когерентных оптических приемниках (КОПр) используется местный лазерный генератор (МЛГ) с узкой линией излучения и устройство автоматической подстройки его частоты (АПЧ), оптический сумматор (ОС), усилитель промежуточной частоты (УПЧ), а также демодулятор (ДМ), амплитудный или частотный, в зависимости от вида модуляции принимаемого сигнала. В такой схеме достигается максимальная длина регенерационного участка.
Кроме того возможна другая схема одноволоконной оптической системы передачи третьей группы, в которой в одном направлении передачи использована модуляция по интенсивности, а в другом - когерентная модуляция (КОИ-АМ или КОИ-ЧМ) оптического сигнала.
На рисунке 3.4 приведена схема, в которой использована модуляция по интенсивности оптических сигналов электрическими сигналами, описываемыми ортогональными (на тактовом интервале) функциями. В отличие от волокон-нооптической системы передачи первой группы (рисунок 3.1), оптические передатчики таких систем содержат генераторы ортогональных сигналов (ГОС1 и ГОС2), а в оптических приёмниках использованы корреляционные демодуляторы (КДМ). Для подстройки генератора ГОС2 используется выделитель ортогонального сигнала (ВОС) и компаратор (КОМ).
Для передачи информационного сигнала может быть использована поднесущая частота, расположенная выше диапазона частот, где несущественно влияние обратного рассеяния в оптическом волокне на характеристики одноволоконной оптической системы передачи (выше 200 Мгц). Таким образом, устраняется шум обратного рассеяния и тем самым повышается энергетический потенциал. В отличие от волоконнооптической системы передачи первой группы, в данной системе используются генераторы поднесущей частоты, полосовые фильтры и устройства восстановления поднесущей частоты.
Максимальная длина регенерационного участка одноволоконной оптической системы передачи третьей группы определяется выражением:
где:
n=11;22;33;
Э11'=Экои-ам, Э22'=Экои-чм, Э33'=Эми' - энергетический потенциал когерентных волоконнооптической системы передачи с амплитудной и частотной модуляцией и волоконнооптической системы передачи с модуляцией по интенсивности.
В отличие от рассмотренных выше одноволоконных оптических систем передачи первой и второй групп, системы данной группы могут быть несимметричными, а максимальные длины регенерационных участков для передачи в разных направлениях - различными. В частности Э11'больше Э33' на 10..15 ДБ, а Э22' больше Э11' на 3 ДБ.
Длина регенерационного участка для направления передачи, где используется КОИ-АМ (Э11'=45ДБ) составляет:
Стоимость когерентных полупроводниковых лазеров и систем стабилизации частоты лазеров, используемых в волоконнооптических системах передачи третьей группы, пока ещё высока, что в значительной степени ограничивает область применения одноволоконных оптических системах передачи с использованием когерентных методов передачи и обработки сигнала. Показатели надежности определяются главным образом надежностью работы полупроводниковых лазеров и систем стабилизации их частоты.
Такие волоконнооптические системы передачи могут быть использованы в экстремальных условиях эксплуатации на одном конце линии, так как полупроводниковые лазеры чрезвычайно чувствительны к нестабильности условий эксплуатации.
Максимальная длина регенерационного участка рассматриваемой одноволоконнооптической системы передачи значительно меньше, чем у систем, описанных выше, и определяется соотношением:
Где aор1, aмои - соответственно затухание сигнала в оптическом разветвителе на выходе 1 и в модулятор отраженного излучения, ДБ.
Длина l4 для aор1=1 ДБ, aмои=3 ДБ и приведенных в пункте 2.1.1 значений других параметров аппаратуры согласно формуле (2.6) составляет:
Показатели надежности одноволоконной оптической системы в данном случае определяются главным образом надежностью оптоэлектронных элементов оборудования, находящегося в экстремальных условиях эксплуатации.
В данном дипломном проекте требуется разработать передающее устройство одноволоконной оптической системы передачи, рассчитанной на работу с длиной волны 0.85 мкм, которая относится к ближнему инфракрасному диапазону излучения.
Поскольку передающее устройство рассчитано на работу в составе многоканальных систем связи на соединительных линиях городской телефонной сети, то в главе освещены вопросы организации охраны труда на предприятиях.
8.1 Лазерная безопасность
Воздействие лазерного излучения на органы зрения
Основной элемент зрительного аппарата человека - сетчатка глаза - может быть поражена лишь излучением видимого ( от 0.4 мкм ) и ближнего ИК-диапазонов ( до 1.4 мкм ), что объясняется спектральными характеристиками человеческого глаза. При этом хрусталик и глазное яблоко, действуя как дополнительная фокусирующая оптика, существенно повышают концентрацию энергии на сетчатке, что, в свою очередь, на несколько порядков понижает максимально допустимый уровень ( МДУ ) облучения зрачка.
В нашей стране на базе проведенных комплексных исследований и современных представлений о влиянии лазерного излучения на организм человека разработан и утвержден ряд нормативных документов, обеспечивающих безопасную эксплуатацию лазерных изделий. Эти документы устанавливают единую систему обеспечения лазерной безопасности. В такую систему входят: технические средства снижения опасных и вредных производственных факторов, организационные мероприятия, контроль условий труда на лазерных установках. В современной отечественной научно-технической и нормативной литературе дано несколько вариантов классификации лазерных изделий. С позиции обеспечения лазерной безопасности их классифицируют по основным физико-техническим параметрам и степени опасности генерируемого излучения.
В зависимости от конструкции лазера и конкретных условий его эксплуатации обслуживающий его персонал может быть подвержен воздействию опасных и вредных производственных факторов. Уровни опасных и вредных производственных факторов на рабочем месте не должны превышать значений, установленных по электробезопасности, взрывоопасности, шуму, уровням ионизирующего излучения, концентрации токсических веществ и др.
Степень воздействия лазерного излучения на оператора зависит от физико-технических характеристик лазера -- плотности мощности (энергии излучения), длины волны, времени облучения, длительности и периодичности импульсов, площади облучаемой поверхности. Биологический эффект лазерного облучения зависит как от вида воздействия излучения на ткани организма (тепловое, фотохимическое), так и от биологических и физико-химических особенностей самих тканей и органов.
Наиболее опасно лазерное излучение с длиной волны:
3801400 нм -- для сетчатки глаза,
180380 нм и свыше 1400 нм -- для передних сред глаза,
180105 нм (т.е. во всем рассматриваемом диапазоне) -- для кожи.
Гигиенистами выдвинуты требования, в соответствии с которыми, в основу проектирования, разработки и эксплуатации лазерной техники должен быть положен принцип исключения воздействия на человека (кроме лечебных целей) лазерного излучения, как прямого, так и зеркально или диффузно отраженного.
Лазерные изделия по степени опасности генерируемого излучения подразделяют на 4 класса. При этом класс опасности лазерного изделия определяется классом опасности используемого в нем лазера. Классификацию лазеров с точки зрения безопасности проводит предприятие-изготовитель путем сравнения выходных характеристик излучения с предельно допустимыми уровнями (ПДУ) при однократном воздействии. Определяя принадлежность лазерного изделия к тому или иному классу по степени опасности лазерного излучения, необходимо учитывать воздействие прямого или отраженного лазерного пучка на глаза и кожу человека и пространственные характеристики лазерного излучения (при этом различают коллимированное излучение, то есть заключенное в ограниченном телесном угле, и неколлимированное, то есть рассеянное или диффузно отраженное). Использование дополнительных оптических систем не входит в понятие "коллимация", а оговаривается отдельно. Лазерные изделия с точки зрения техники безопасности классифицируют в основном по степени опасности генерируемого излучения. Установлены следующие 4 класса лазеров:
1. Полностью безопасные лазеры, выходное излучение которых не представляет опасности для глаз и кожи человека;
2. Лазеры, выходное излучение которых представляет опасность при облучении кожи или глаз человека коллимированным пучком. В то же время диффузно отраженное излучение лазеров этого класса безопасно как для кожи, так и для глаз;
3. Лазерные устройства, работающие в видимой области спектра и выходное излучение которых представляет опасность при облучении как глаз (коллимированным и диффузно отраженным излучением на расстоянии менее 10 см от отражающей поверхности), так и кожи (только коллимированным пучком);
4. Наиболее опасный -- к нему относят лазерные устройства, даже диффузно отраженное излучение которых представляет опасность для глаз и кожи на расстоянии менее 10 см.
При определении класса опасности лазерного излучения учитываются три спектральных диапазона.
Таблица 8.1 - Диапазоны лазерного излучения
Класс |
||||
опасности |
180380 нм |
3801400 нм |
1400105 нм |
|
лазерного |
Диапазон |
|||
излучения |
I |
II |
III |
|
1 |
+ |
+ |
+ |
|
2 |
+ |
+ |
+ |
|
3 |
-- |
+ |
-- |
|
4 |
+ |
+ |
+ |
Для каждого режима работы лазера и его спектрального диапазона регламентируют предельно допустимый уровень излучения. Нормируемыми параметрами с точки зрения опасности лазерного излучения являются энергия W и мощность P излучения, прошедшего ограничивающую апертуру диаметрами dа=1.1 мм (в спектральных диапазонах I и II) и dа=7 мм (в диапазоне II); энергетическая экспозиция H и облученность E, усредненные по ограничивающей апертуре:
H=W/Sa; E=P/Sa , (3.1)
где Sa -- площадь ограничивающей апертуры.
Таблица 8.2 - Предельные дозы при однократном воздействии на глаза коллимированного лазерного излучения
Длина волны , нм |
Длительность воздействия t, с |
WПДУ, Дж |
|
380600 |
t2.310-11 |
||
2.310-11t510-5 |
810-8 |
||
510-5t1 |
|||
600750 |
t6.510-11 |
||
6.510-11t510-5 |
1.610-7 |
||
510-5t1 |
|||
7501000 |
t2.510-10 |
||
2.510-10t510-5 |
410-7 |
||
510-5t1 |
|||
10001400 |
t10-9 |
||
10-9t510-5 |
10-6 |
||
510-5t1 |
Примечания: 1. Длительность воздействия меньше 1 с.
2. Ограничивающая апертура = 710-3 м.
Предельно допустимый уровень лазерного излучения устанавливают для двух условий - однократного и хронического облучения. Под хроническим понимают "систематически повторяющееся воздействие, которому подвергаются люди, профессионально связанные с лазерным излучением".
Предельно допустимый уровень при этом определяют как:
1. Уровни лазерного излучения, при которых "существует незначительная вероятность возникновения обратимых отклонений в организме" человека;
2. Уровни излучения, которые "при работе установленной продолжительности в течение всего трудового стажа не приводят к травме (повреждению), заболеванию или отклонению в состоянии здоровья как самого работающего, так и последующих его поколений".
Предельно допустимый уровень хронического воздействия рассчитывают путем уменьшения в 510 раз ПДУ однократного воздействия.
Размещение лазерных изделий в каждом конкретном случае производится с учётом класса опасности изделий, условий и режима труда персонала, особенностей технологического процесса, подводка коммуникаций.
Требования для класса 3Б:
Расстояние между лазерными изделиями должно обеспечивать безопасные условия труда и удобство эксплуатации, ремонта и обслуживания. Рекомендуется для класса 3Б:
- Со стороны органов управления: при однорядном расположении-1,5 м;
- при двухрядном не менее - 2,0 м;
- c других сторон не менее - 1,0 м;
- траектория прохождения лазерного пучка должна быть заключена в оболочку из несгораемого материала или иметь ограждение, снижающие уровень лазерного излучения к допустимому уровню и исключающие попадание лазерного пучка на зеркальную поверхность. Открытые траектории в зоне возможного нахождения человека должны располагаться значительно выше уровня глаз. Минимальная высота траектории 2,2 м.
- Рабочее место должно быть организовано таким образом, чтобы исключать возможность воздействия на персонал лазерного излучения или чтобы его величина не превышала допустимый уровень для первого класса;
- рабочее место обслуживающего персонала, взаимное расположение всех элементов (органов управления, средств отображения информации и др.) должна обеспечивать рациональность рабочих движений и максимально учитывать энергетические, скоростные, силовые и психофизические возможности человека.
- Следует предусматривать наличие мест для размещения съемных деталей, переносной измерительной аппаратуры, хранения заготовок, готовых изделий.
По степени зашиты персонала от воздействия лазерного излучения условия и характер труда при эксплуатации лазерных изделий независимо от класса изделия подразделяются:
А) оптимальные - исключающие воздействие на персонал лазерного излучения;
Б) допустимые - уровень лазерного излучения, воздействующего на персонал, меньше предельно допустимого уровня.
В) вредные и опасные - уровень лазерного излучения, воздействующего на персонал, превышает предельно допустимый уровень.
Выполнение следующих требований безопасности должно обеспечивать исключение или максимальное уменьшение возможности облучения персонала лазерным излучением, а также воздействия на него других опасных факторов:
- К ремонту, наладке и испытаниям лазерных изделий допускаются лица,
имеющие соответствующую квалификацию и прошедшие инструктаж по
технике безопасности в установленном порядке.
К работе с лазерными изделиями допускаются лица, достигшие восем-надцати лет, не имеющие медицинских противопоказаний,
прошедшие курс специального обучения в установленном порядке работе
с конкретными лазерными изделиями и аттестацию на группу по охране
труда при работе на электроустановках с соответствующим напряжением.
При эксплуатации изделий выше класса 2 должно назначаться лицо, ответственное за охрану труда при их эксплуатации.
Лазерные изделия, находящиеся в эксплуатации, должны подвергаться регулярной профилактической проверке. При проведении профилактической проверки следует обращать особое внимание на безотказность работы всех защитных устройств, надёжность заземления.
8.3 Мероприятия по производственной санитарии
Обоснование вида пайки
В связи с незначительным объемом производства (предполагаемый объем производства составляет 100 штук за год), а также учитывая форму и размеры печатного узла, количество радио элементов на печатной плате устройства, при изготовлении данного блока целесообразно применять ручную пайку. А для обеспечения электробезопасности необходимо применить электропаяльник мощностью 20-40Вт при напряжении питания 36В.
В соответствии со сборочным чертежом волоконнооптического передающего устройства, пайку печатных плат нужно производить припоем ПОС-61 ГОСТ 21931-76. Химический состав этого припоя приведён в таблице8.3
Таблица 8.3. Химический состав низкотемпературных припоев
Марка припоя |
Олово |
Свинец |
Висмут |
Примеси |
|
ПОС-61 |
60-62% |
37,7 -39,7% |
нет |
0,29% |
Пайка в атмосфере обычными припоями производится, обычно, с применением флюсов. В качестве флюсов применяются канифоль, стеарин, их спиртовые растворы, а также флюсы содержащие солянокислый гидразин.
Для пайки выше вышеперечисленными низкотемпературными припоями применим наиболее распространённый и дешёвый смолосодержащий флюс марки ФКСП по ОСТ4.ГО.033.000. Состав флюса:
70-60% сосновой канифоли.
30-40% спирта этилового.
В качестве моющего средства для удаления остатков флюса применим
смесь бензина и этилового спирта в соотношении 1:1.
Опасные и вредные воздействия, вызванные
процессами пайки
Потенциально опасные и вредные производственные факторы при пайке:
Запыленность и загазованность воздуха рабочей зоны;
Наличие инфракрасных излучений;
Неудовлетворительная освещенность рабочих мест или повышенная яркость;
Неудовлетворительные метеорологические условия в рабочей зоне;
Воздействия брызг и капель расплавленного припоя;
Возможное поражение электрическим током;
Психофизиологические перегрузки.
Описание биологического действия опасных и вредных веществ находящихся в воздухе рабочей зоны
Процессы пайки сопровождаются загрязнением воздушной среды аэрозолями припоя, флюса, парами различных жидкостей, применяемых для флюса, смывки и растворения лаков.
Находясь в запыленной атмосфере, рабочие подвергаются воздействию пыли и паров. Вредные вещества оседают на кожном покрове, попадают на слизистые оболочки полости рта, глаз, верхних дыхательных путей, заглаты-ваются в пищеварительный тракт, вдыхаются в лёгкие.
Особенно вредны при пайке оловяно-свинцовыми припоями пары свинца. Свинец и его соединения ядовиты. Часть поступившего в организм свинца выводится из него через кишечник и почки, а часть задерживается в костном веществе, мышцах, печени. При неблагоприятных условиях свинец начинает циркулировать в крови, вызывая явления свинцового отравления. Для предотвращения острых заболеваний и профессиональных заболеваний содержание свинца не должно превышать предельно допустимых концентраций. Биологическое действие и предельно допустимые концентрации компонентов входящих в состав используемых припоев приведены в табл.8.4.
Применение флюсов при пайке также оказывает вредное влияние на организм человека. Компоненты входящие в состав флюса, обладают раздражающим, наркотическим действием.
Таблица 8.4. Биологическое действие, класс опасности и ПКД в воздухе рабочей зоны исходных компонентов входящих в состав припоев.
Компонент |
Характер токсичности и действие |
Класс опасности |
ПКД в воздухе рабочей зоны |
|
Олово |
Поражение бронхов, вызывает профилактивно-креточную реакцию в легких. При длительном воздействии возможен пневмокониоз. |
3 |
10мг\ |
|
Свинец |
При отравлении наблюдается поражение нервной системы, крови, желудочно-кишечного тракта, сердечно-сосудистой системы, половой системы, нарушение течения беременности. |
1 |
0.01мг\ |
|
Висмут |
Подобно действию других металлов вызывает угнетение активности ферментов, оказывает эмбриотропное и гонадотропное действие. |
__ |
__ |
Компонент |
Токсичность и характер действия |
Класс опасности |
ПДК в воздухе рабочей зоны, мг\ |
|
Канифоль сосновая |
Обладает раздражающим действием. При длительном воздействии на кожу вызывает дерматит. |
__ |
__ |
|
Спирт этиловый |
Обладает наркотическим и раздражающим действием. Вызывает изменения печени, сердечно-сосудистой и нервной системы, сухость кожи при длительном контакте. |
4 |
1000 |
Компонент |
Токсичность и характер действия |
Класс опасности |
ПДК в воздухе рабочей зоны, мг\ |
|
Бензин |
Обладает раздражающим действием и как наркотик… Функциональные нервные расстройства, сопровождаемые мышечной слабостью, вялостью, сонливостью или бессонницей. Расстройства пищеварительного тракта, печени, дрожание пальцев и языка, поражение кожи. Характерно развитие судорог, понижается кровяное давление, пульс замедляется. |
4 |
300 (в пересчёте на углерод) |
Область ИК излучения |
Длинна волны, нм |
|
А |
760…15000 |
|
В |
1500…3000 |
|
С |
3000…10000 |
А=85 для кожи человека и хлопчатобумажной ткани;
Т - температура излучающей поверхности, складывающейся из температуры плавления припоя Тпп=483 К, избыточной температуры жала паяльника Тж=70 К, тогда Т=Тпп + Тж=483 + 70=553 К.
По закону Вина находим длину волны ИК излучения тела с температурой 553 К.
Данное излучение относится к области С. Допустимая плотность потока энергии для нашего случая в соответствии с требованиями составляет 85. Приходим к выводу, что инфракрасное излучение не будет оказывать вредного действия на организм человека.
Определение концентрации аэрозолей свинца
в воздухе рабочей зоны
Количество аэрозоля свинца, выделяемое при пайке в атмосферу составляет 0.02-0.04мг на 100 паек.
Исходными данными для расчета концентрации свинца при пайке является:
N - количество рабочих мест, на которых ведётся пайка; N=4;
Размеры помещения, 5х5х3м,
n - количество паек в минуту, n=10;
Концентрация аэрозоля свинца в атмосфере при ручной пайке определяется по формуле:
y - удельное образование аэрозоля свинца; y=0.03мг/100паек.
t - длительность смены; t=8ч;
V - объём помещения,
Тогда:
Концентрация свинца в воздухе рабочей зоны в 7 раз превышает предельно допустимую концентрацию, поэтому необходимо предусмотреть местную вентиляцию, расчёт которой приведен далее.
8.4 Требование к освещению и расчёт освещённости
При монтаже печатных плат уровень освещённости должен быть оптимальным. При излишне ярком освещении возникает быстрое утомление рабочего, что может привести к потере работоспособности и травмы.
Естественное освещение помещения осуществляется боковым светом через световые проёмы в наружных стенах или через прозрачные части стен.
Основная величина для расчёта освещения (КЕО). Он зависит от широты местности, времени года и погоды. По нему производится нормирование естественного освещения.
При одностороннем боковом освещении нормируется минимальное значение КЕО в точке, расположенной на расстоянии 1 метр от наиболее удаленной от световых проёмов стены, на пересечении характерного размера помещения и условной рабочей поверхности.
Методика расчёта изложена в [8]. Согласно СНиП ІІ-4-79/85 нормированное значение КЕО для работ высокой точности(объект различения от 0.3 до 0.5мм) со средним контрастом объекта различения с фоном и средним фоном для ІІІ-го пояса .Для г.Киев (ІV пояс светового климата) КЕО:
(7.2) ,где
-КЕО для ІІІ-го пояса;
m - коэффициент светового климата; по таблице 1.2 из [8] находим m=0.9
c- коэффициент солнечности климата по табл. 1.3. [8], для световых проёмов ориентированных по азимуту 70град. коэффициент с=0.8
(7.3)
Фактичесоке значение КЕО для бокового овещения расчитываем по формуле: (7.4), где
- геометрические КЕО в расчётной точке при боковом освещении, учитывающие прямой свет неба и свет отражённый от противостоящего здания соответсвенно;
n1,n1`,n2,n2` -количество лучей по графикам І и ІІ [8] проходящим от неба и противостоящего здания в расчётную точку на поперечном разрезе и плане помещения;
(7.5)
(7.6)
q -коэффициент, учитывающий неравномерную яркость облачного неба из таблицы 2.4. [8] для угловой высоты середины светового проёма над рабочей поверхностью (рис.8.1);
R - коэффициент учитывающий относительную яркость противосто-ящего здания, для здания из кирпича с учётом индексов противостоящего здания в плане Z1 и в разрезе Z2.
; ; (7.7)
- соответственно длинна и высота противостоящего здания ;
-расстояние от расчётной точки в помещении до внешней поверхности наружной стены здания;
р -расстояние между рассматриваемыми зданиями;
а -ширина окна в плане;
r1- коэффициент учитывающий увеличение КЕО при боковом освещении из-за отражения от поверхностей помещения и подстилающего слоя. Зависит от отношения глубины В к высоте верха окна до уровня рабочей поверхности h1, отношения l к В, и отношения длинны помещения длинны помещения к его глубине В, средневзвешенного коэфициента отражения поверхностей помещения :
(7.8)
- коэффициенты отражения соответственно потолка, стен, пола из таблицы 1.7 [8]
- площади соответсвенно потолка, пола и стен;
- общий коэффициент светопропускания;
(7.9)
- коэффициент светопропускания материала остекления, берётся из таблицы 1.8 [8] для двойного оконного листового стекла;
- коэффициент учитываующий потери в переплётах светопроёма из таблицы 1.9. [8]
- коэффициент запаса, определяемый по таблице 1.12 [8].
Значения параметров определяемые по таблицам [8], а также по плану и разрезу помещения, результаты промежуточных вычислений сведены в таб. 8.7 подставляя численные значения находим:
Таюлица 8.7 Исходные данные и значения коэффициентов необходиых для расчёта КЕО.
Исходные данные коэффициенты |
Значение |
Исходныеданные коэффициенты |
Значение |
|
n1n1`n2n2`qpah1`h1BZ1Z2
|
4131191.240.19140.6430м10м4,25м40м3,6м2,8м2,1м5м5м0,80,270,7 |
B/h1R |
0,70,12549250,552,40,812,50,80,71110,561,50,25 |
Для определения табличного значения функции находим отношение
p` и l` :
p`=p/n , p - расстояние от расчётной точки до проекции ряда светильников на горизонтальную плоскость.
l`=l2/n, l2 - расстояние до расчётной точки от стены.
p`=1/4=0.25 l`=2.5/4=0.62
Для угла =25 под которым падает свет У=162лм. По табл.1.10 [9] по У, для светильников 9-й группы определяем f(p`,l`)=0.55
Тогда = f(p`,l`) У=0.55*162=89
Поставляя численные значения в формулу (7.10), получаем:
По таблице П1 [9] определяем значение нормированной освещённости. Для работ высокой точности (объект различения от 0.3 до 0.5 мм) со средним контрастом объекта различения с фоном при среднем фоне находим Ен=400лк.
Так как рассчитанное фактическое значение освещенности больше нормированного, делаем вывод о пригодности системы освещения в помещении.
8.5 Мероприятия по улучшению условий труда
8.5.1 Расчёт местного отсоса
Поскольку концентрация аэрозоля свинца в воздухе превышает предельно допустимую норму, то необходимо применить местную вентиляцию.
Вентиляционная установка включается до начала работы и выключается после её окончания. Работа вентиляционных установок контролируется с помощью световой сигнализации.
Разводка вентиляционной сети и конструкция местных отсосов обеспечивает возможность регулярной очистки воздуховодов.
Электропаяльник в рабочем состоянии находится в зоне действия вытяжной вентиляции.
Метеорологические условия на рабочих местах должны соответствовать ГОСТ 12.1 005-88.
Местная вентиляция при пайке является наиболее эффективным и экономическим средством обеспечения санитарно-гигиенических параметров воздушной среды в рабочей зоне. Широкое применение при пайке имеет местная вытяжная вентиляция , которая условно разделяется на местные отсосы открытого и закрытого типа.
В данном случае, для улавливания выделяющихся при пайке вредных паров используем местный отсос в виде прямоугольного отверстия (рис.8.3)
Определяем количество отсасываемого воздуха [11]:
(7.12)
S - площадь высасывающего отверстия, ;
Е - большая сторона отверстия, м;
Х - расстояние от плоскости всасывающего отверстия до зоны пайки;
- скорость воздуха в зоне пайки.
Задаёмся =0.6
Величины Е и Х выбираем в соответствии со сборочным чертежом волоконнооптического передатчика как наибольшую и меньшую стороны соответствующего блока. Габариты блока одноволоконного оптического передатчика 304,5 х101мм. Принимаем Е=0.31м, а Х=0.11м. Определим оптимальный размер наименьшей стороны всасывающего отверстия [11]:
(7.13)
Площадь всасывающего отверстия:
По формуле (7.12) определяем количество отсасываемого воздуха:
Определим допустимую концентрацию пыли в удаляемом воздухе. Так как для всех рабочих мест помещения общее количество отсасываемого воздуха:
<15000
то в соответствии с [11]
(7.14), где
К - коэффициент зависящий от ПДК пыли в воздухе рабочей зоны (для аэрозоля свинца К=0.3);
L - объём удаляемого воздуха, тыс. ;
(7.15)
y - удельное образование свинца ; y=0.03;
n - количество паек в минуту, n=10;
N - количество рабочих мест.
Так как >>, то в применении специальных мероприятий по охране окружающей среды нет необходимости.
8.6 Мероприятия по пожарной безопасности
Некоторые вещества и материалы, применяемые на участке монтажа пожаровзрывоопасны. Эти вещества, некоторые их характеристики и средства пожаротушения приведены в таблице 8.8.
Для того чтобы определить категорию помещения по взрывопожарной и пожарной опасности в соответствии с ОНТП 24-86, необходимо рассчитать избыточное давление взрыва в помещении. Избыточное давление взрыва определим по формуле [8]:
Таблица 8.8 Пожаровзрывоопасные вещества применяемые при производстве печатного узла
Наименование вещества |
Температура воспламенения |
Температура самовоспламе-нения |
Пределы взрываемости |
Средства пожаротушения |
||
Нижний |
Верхний |
|||||
Канифоль |
- |
850 |
12,6 |
- |
Химическая и воздушно-механическая пена, распыленная вода |
|
Спирт этиловый бензиновый |
18 |
104 |
3,6%; 68 |
19%; 340 |
Химическая пена, вода, инертные газы |
|
бензины |
17-44 |
255-474 |
0,76-1,1% |
5,16-8,12% |
Пена, водяной пар, инертные газы |
|
Стекло-текстолит |
- |
- |
- |
- |
Вода, химическая пена |
(7.16), где
- максимальное давление взрыва стехиометрической газо-воздушной или паро-воздушной смеси в замкнутом объёме (=750кПА);
- начальное давление, =101кПа;
m - масса горючего вещества, кг;
Z - площадь испарения, ;
- Свободный объём помещения;
- плотность газа и пара ()
Сст - стехиометрическая концентрация горючего газа или
паров ЛВЖ, %;
Ки - коэффициент учитывающий негерметичность помещения и недиабатность процесса горения, Ки=3;
Свободный объём помещения определяем по формуле:
(7.17)
Стехиометрическая концентрация попределяется по формуле:
- стехиометрический коэффициент кислорода в реакции горения.
- число атомов С, Н, О и галоидов в молекуле горючего;
Расчитываем по вышеуказанной методике принимая
Ежедневно на участке монтажа расходуется 0.3л спирта; расчёт произведён для самого неблагоприятного случая; все содержимое поступает в помещение (для 0.3л легко воспламеняющейся жидкости площадь
разлива 0.3);
Массу паров жидкости определим по формуле:
- интенсивность испарения, ;
- площадь испареня, ;
- длительность испарения ()
Интенсивность испарения определим так:
(7.18)
- коэффициент выбираемый из [8] в зависимости от скорости и температуры над поверхностью жидкости ();
- молекулярная масса ();
- давление насыщенности пара ();
Из справочных данных для :
Тогда:
, ,
, ,
В результате расчёта делаем вывод о принадлежности помещения к категории В пожароопасное (табл 10 [11]). Поскольку в помещении взрывчатые смеси горючих газов и паров с воздухом не образуется, а образуются они только в результате аварии или неисправности, то помещение можно отнести к классу В-lб взрывоопасных зон [11].
Основными причинами возникновения пожара являются:
-Нарушение установленных правил пожарной безопасности и неосторожное обращение с огнём;
-неисправность и перегрузка электрических устройств (короткое замыкание);
-неисправность вентиляционной системы, вызывающая самовозгорания или взрыв пыли;
-халатное и неосторожное обращение с огнём;
-самовоспламенение хлопчатобумажной ткани пропитанной маслом, бензином или спиртом;
-статическое электричество, образующееся от трения пыли или газов в вентиляционных установках;
-грозовые разряды при отсутствии или неисправности молниеотводов.
В помещениях, где производится монтаж печатных плат предусматриваем электрическую пожарную сигнализацию (пять извещателей типа ПОСТ-1), которая служит для быстрого извещения службы пожаротушения о возникновении пожара.
Количество размещённых огнетушителей в ра